Welcome!

Wearables Authors: Elizabeth White, Pat Romanski, Shelly Palmer, Yeshim Deniz, Carmen Gonzalez

Related Topics: @DevOpsSummit, Linux Containers, Containers Expo Blog

@DevOpsSummit: Article

Five #Logstash Alternatives | @DevOpsSummit @Sematext #Elasticsearch

Shippers have their pros and cons, and ultimately it’s down to your specifications

When it comes to centralizing logs to Elasticsearch, the first log shipper that comes to mind is Logstash. People hear about it even if it's not clear what it does:
- Bob: I'm looking to aggregate logs
- Alice: you mean... like... Logstash?

When you get into it, you realize centralizing logs often implies a bunch of things, and Logstash isn't the only log shipper that fits the bill:

  • fetching data from a source: a file, a UNIX socket, TCP, UDP...
  • processing it: appending a timestamp, parsing unstructured data, adding Geo information based on IP
  • shipping it to a destination. In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry

In this post, we'll describe Logstash and its alternatives - 5 "alternative" log shippers (Filebeat, Fluentd, rsyslog, syslog-ng and Logagent), so you know which fits which use-case.

Logstash
It's not the oldest shipper of this list (that would be syslog-ng, ironically the only one with "new" in its name), it's certainly the best known. That's because it has lots of plugins: inputs, codecs, filters and outputs. Basically, you can take pretty much any kind of data, enrich it as you wish, then push it to lots of destinations.

Strengths
Logstash's main strongpoint is flexibility, due to the number of plugins. Also, its clear documentation and straightforward configuration format means it's used in a variety of use-cases. This leads to a virtuous cycle: you can find online recipes for doing pretty much anything. Here are a few examples from us: 5 minute intro, reindexing data in Elasticsearch, parsing Elasticsearch logs, rewriting Elasticsearch slowlogs so you can replay them with JMeter.

Weaknesses
Logstash's Achille's heel has always been performance and resource consumption (the default heap size is 1GB). Though performance improved a lot over the years, it's still a lot slower than the alternatives. We've done some benchmarks comparing Logstash to rsyslog and to filebeat and Elasticsearch's Ingest node. This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.

Another problem is that Logstash currently doesn't buffer yet. A typical workaround is to use Redis or Kafka as a central buffer:

Logstash - Kafka - Elasticsearch

Typical use-case
Because of the flexibility and abundance of recipes, Logstash is a great tool for prototyping, especially for more complex parsing. If you have big servers, you might as well install Logstash on each. You won't need buffering if you're tailing files, because the file itself can act as a buffer (i.e. Logstash remembers where it left off):

Logstash - Elasticsearch (1)

If you have small servers, installing Logstash on each is a no go, so you'll need a lightweight log shipper on them, that could push data to Elasticsearch though one (or more) central Logstash servers:

Light shipper - Logstash - Elasticsearch

As your logging project moves forward, you may or may not need to change your log shipper because of performance/cost. When choosing whether Logstash performs well enough, it's important to have a good estimation of throughput needs - which would predict how much you'd spend on Logstash hardware.

Filebeat
As part of the Beats "family", Filebeat is a lightweight log shipper that came to life precisely to address the weakness of Logstash: Filebeat was made to be that lightweight log shipper that pushes to Logstash.

With version 5.x, Elasticsearch has some parsing capabilities (like Logstash's filters) called Ingest. This means you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing. You shouldn't need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off:

Filebeat - Ingest - Elasticsearch

If you need buffering (e.g. because you don't want to fill up the file system on logging servers), you can use Redis/Kafka, because Filebeat can talk to them:

Filebeat - Kafka - Elasticsearch

Strengths
Filebeat is just a tiny binary with no dependencies. It takes very little resources and, though it's young, I find it quite reliable - mainly because it's simple and there are few things that can go wrong. That said, you have lots of knobs regarding what it can do. For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn't get changes for a while.

Weaknesses
Filebeat's scope is very limited, so you'll have a problem to solve somewhere else. For example, if you use Logstash down the pipeline, you have about the same performance issue. Because of this, Filebeat's scope is growing. Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.

Typical use-cases
Filebeat is great for solving a specific problem: you log to files, and you want to either:

  • ship directly to Elasticsearch. This works if you want to just "grep" them or if you log in JSON (Filebeat can parse JSON). Or, if you want to use Elasticsearch's Ingest for parsing and enriching (assuming the performance and functionality of Ingest fits your needs)
  • put them in Kafka/Redis, so another shipper (e.g. Logstash, or a custom Kafka consumer) can do the enriching and shipping. This assumes that the chosen shipper fits your functionality and performance needs

Logagent
This is our log shipper that was born out of the need to make it easy for someone who didn't use a log shipper before to send logs to Logsene (our logging SaaS which exposes the Elasticsearch API). And because Logsene exposes the Elasticsearch API, Logagent can be just as easily used to push data to Elasticsearch.

Strengths
The main one is ease of use: if Logstash is easy (actually, you still need a bit of learning if you never used it, that's natural), this one really gets you started in a minute. It tails everything in /var/log out of the box, parses various logging formats out of the box (Elasticsearch, Solr, MongoDB, Apache HTTPD...). It can mask sensitive data like PII, date of birth, credit card numbers, etc. It will also do GeoIP enriching based on IPs (e.g., for access logs) and update the GeoIP database automatically. It's also light and fast, you'll be able to put it on most logging boxes (unless you have very small ones, like appliances). The new 2.x version added support for pluggable inputs and outputs in a form of 3rd party node.js modules. Very importantly, Logagent has local buffering so, unlike Logstash, it will not lose your logs when the destination is not available.

Weaknesses
Logagent is still young, although is developing and maturing quickly. It has some interesting functionality (e.g. it accepts Heroku or CloudFoundry logs), but it is not yet as flexible as Logstash.

Typical use-cases
Logagent is a good choice of a shipper that can do everything (tail, parse, buffer - yes, it can buffer on disk - and ship) that you can install on each logging server. Especially if you want to get started quickly. Logagent is embedded in Sematext Docker Agent to parse and ship Docker containers logs. Sematext Docker Agent works with Docker Swarm, Docker Datacenter, Docker Cloud, as well as Amazon EC2, Google Container Engine, Kubernetes, Mesos, RancherOS, and CoreOS, so for Docker log shipping, this is the tool to use.

rsyslog
The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages. It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch. You can find a howto for processing Apache and system logs here.

Strengths
rsyslog is the fastest shipper that we tested so far. If you use it as a simple router/shipper, any decent machine will be limited by network bandwidth, but it really shines when you want to parse multiple rules. Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim). This means that with 20-30 rules, like you have when parsing Cisco logs, it can outperform the regex-based parsers like grok by a factor of 100 (it can be more or less, depending on the grok implementation and liblognorm version).

It's also one of the lightest parsers you can find, depending on the configured memory buffers.

Weaknesses
rsyslog requires more work to get the configuration right (you can find some sample configuration snippets here on our blog) and this is made more difficult by two things:

  • documentation is hard to navigate, especially for somebody new to the terminology
  • versions up to 5.x had a different configuration format (expanded from the syslogd config format, which it still supports). Newer versions can still work with the old format, but most newer features (like the Elasticsearch output) only work with the new configuration format, but then again there are older plugins (for example, the Postgres output) which only support the old format

Though rsyslog tends to be reliable once you get to a stable configuration (and it's rich enough that there are usually multiple ways of getting the same result), you're likely to find some interesting bugs along the way. Not all features are tested as part of the testbench.

Typical use-cases
rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container). If you need to do processing in another shipper (e.g. Logstash) you can forward JSON over TCP for example, or connect them via a Kafka/Redis buffer.

rsyslog also works well when you need that ultimate performance. Especially if you have multiple parsing rules. Then it makes sense to invest time in getting that configuration working.

syslog-ng
You can think of syslog-ng as an alternative to rsyslog (though historically it was actually the other way around). It's also a modular syslog daemon, that can do much more than just syslog. It recently received disk buffers and an Elasticsearch HTTP output. Equipped with a grammar-based parser (PatternDB), it has all you probably need to be a good log shipper to Elasticsearch.

Advantages
Like rsyslog, it's a light log shipper and it also performs well. It used to be a lot slower than rsyslog before, and I haven't benchmarked the two recently, but 570K logs/s two years ago isn't bad at all. Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.

Disadvantages
The main reason why distros switched to rsyslog was syslog-ng Premium Edition, which used to be much more feature-rich than the Open Source Edition which was somewhat restricted back then. We're concentrating on the Open Source Edition here, all these log shippers are open source. Things have changed in the meantime, for example disk buffers, which used to be a PE feature, landed in OSE. Still, some features, like the reliable delivery protocol (with application-level acknowledgements) have not made it to OSE yet.

Typical use-cases
Similarly to rsyslog, you'd probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing. As with rsyslog, there's a Kafka output that allows you to use Kafka as a central queue and potentially do more processing in Logstash or a custom consumer:

syslog-ng - Kafka - Elasticsearch

The difference is, syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance: for example, only outputs are buffered, so processing is done before buffering - meaning that a processing spike would put pressure up the logging stream.

Fluentd
Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don't have to guess which substring is which field of which type. As a result, there are libraries for virtually every language, meaning you can easily plug in your custom applications to your logging pipeline.

Advantages
Like most Logstash plugins, Fluentd plugins are in Ruby and very easy to write. So there are lots of them, pretty much any source and destination has a plugin (with varying degrees of maturity, of course). This, coupled with the "fluent libraries" means you can easily hook almost anything to anything using Fluentd.

Disadvantages
Because in most cases you'll get structured data through Fluentd, it's not made to have the flexibility of other shippers on this list (Filebeat excluded). You can still parse unstructured via regular expressions and filter them using tags, for example, but you don't get features such as local variables or full-blown conditionals. Also, while performance is fine for most use-cases, it's not in on the top of this list: buffers exist only for outputs (like in syslog-ng), single-threaded core and the Ruby GIL for plugins means ultimate performance on big boxes is limited, but resource consumption is acceptable for most use-cases. For small/embedded devices, you might want to look at Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.

Typical use-cases
Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins. Also, if most of the sources are custom applications, you may find it easier to work with fluent libraries than coupling a logging library with a log shipper. Especially if your applications are written in multiple languages - meaning you'd use multiple logging libraries, which may behave differently.

The conclusion?
First of all, the conclusion is that you're awesome for reading all the way to this point. If you did that, you get the nuances of an "it depends on your use-case" kind of answer. All these shippers have their pros and cons, and ultimately it's down to your specifications (and in practice, also to your personal preferences) to choose the one that works best for you. If you need help deciding, integrating, or really any help with logging don't be afraid to reach out - we offer Logging Consulting. Similarly, if you are looking for a place to ship your logs and avoid costs/headaches associated with running the full ELK/Elastic Stack on your own servers, check out Logsene - it exposes Elasticsearch API, so you can use it with all shippers we covered here.

The post 5 Logstash Alternatives appeared first on Sematext.

More Stories By Radu Gheorghe

Radu Gheorghe is a search consultant, software engineer and trainer at Sematext Group, working mainly with Elasticsearch, Solr and logging-related projects. He is the co-author of Elasticsearch in Action.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Infoblox delivers Actionable Network Intelligence to enterprise, government, and service provider customers around the world. They are the industry leader in DNS, DHCP, and IP address management, the category known as DDI. We empower thousands of organizations to control and secure their networks from the core-enabling them to increase efficiency and visibility, improve customer service, and meet compliance requirements.
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant tha...
SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, will lead you through the exciting evolution of the cloud. He'll look at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering ...
SYS-CON Events announced today that N3N will exhibit at SYS-CON's @ThingsExpo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. N3N’s solutions increase the effectiveness of operations and control centers, increase the value of IoT investments, and facilitate real-time operational decision making. N3N enables operations teams with a four dimensional digital “big board” that consolidates real-time live video feeds alongside IoT sensor data a...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
SYS-CON Events announced today that Avere Systems, a leading provider of enterprise storage for the hybrid cloud, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Avere delivers a more modern architectural approach to storage that doesn't require the overprovisioning of storage capacity to achieve performance, overspending on expensive storage media for inactive data or the overbui...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend 21st Cloud Expo October 31 - November 2, 2017, at the Santa Clara Convention Center, CA, and June 12-14, 2018, at the Javits Center in New York City, NY, and learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
Digital transformation is changing the face of business. The IDC predicts that enterprises will commit to a massive new scale of digital transformation, to stake out leadership positions in the "digital transformation economy." Accordingly, attendees at the upcoming Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA, Oct 31-Nov 2, will find fresh new content in a new track called Enterprise Cloud & Digital Transformation.
Most technology leaders, contemporary and from the hardware era, are reshaping their businesses to do software. They hope to capture value from emerging technologies such as IoT, SDN, and AI. Ultimately, irrespective of the vertical, it is about deriving value from independent software applications participating in an ecosystem as one comprehensive solution. In his session at @ThingsExpo, Kausik Sridhar, founder and CTO of Pulzze Systems, will discuss how given the magnitude of today's applicati...
SYS-CON Events announced today that NetApp has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. NetApp is the data authority for hybrid cloud. NetApp provides a full range of hybrid cloud data services that simplify management of applications and data across cloud and on-premises environments to accelerate digital transformation. Together with their partners, NetApp emp...
As popularity of the smart home is growing and continues to go mainstream, technological factors play a greater role. The IoT protocol houses the interoperability battery consumption, security, and configuration of a smart home device, and it can be difficult for companies to choose the right kind for their product. For both DIY and professionally installed smart homes, developers need to consider each of these elements for their product to be successful in the market and current smart homes.
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant th...
SYS-CON Events announced today that Avere Systems, a leading provider of hybrid cloud enablement solutions, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Avere Systems was created by file systems experts determined to reinvent storage by changing the way enterprises thought about and bought storage resources. With decades of experience behind the company’s founders, Avere got its ...
SYS-CON Events announced today that Golden Gate University will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Since 1901, non-profit Golden Gate University (GGU) has been helping adults achieve their professional goals by providing high quality, practice-based undergraduate and graduate educational programs in law, taxation, business and related professions. Many of its courses are taug...
SYS-CON Events announced today that SIGMA Corporation will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. uLaser flow inspection device from the Japanese top share to Global Standard! Then, make the best use of data to flip to next page. For more information, visit http://www.sigma-k.co.jp/en/.
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, will discuss how by using...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...